LogoLogo
DEIN WebsiteSocials
  • Introducing DEIN
  • DEIN: Overview
  • Glossary
  • Onboarding Guides
    • Purchasing a Policy
    • Personalized Insurance (Demands)
      • Creating a Demand - Guide
      • Managing a Demand - Guide
      • Underwriting a Demand - Guide
      • Demand rewards - Guide
    • Underwriting a Policy Book
    • Staking DEIN tokens
    • Staking DEIN LP tokens
    • How to receive voting rewards
    • How to Vote
    • Adding a Project
  • Get Insured
    • Getting Insured
      • 👓Premium calculations
    • Policy Terms
      • 📄Smart Contract
      • 📌De-pegging
    • Personalized Insurance
      • 🎚️Profitability Meter
    • Making a Claim
    • Non-EVM Policies
  • Underwrite
    • Underwriting
      • 🎁Rewards
      • ⬅️Withdrawing funds
    • Demands
    • Adding a Policy Book
  • Govern
    • Native DEIN staking
    • DEIN LP staking
    • Voting
      • 🗒️Claim voting process
      • 🎁Reputation and reward system
      • ✅Trusted Voters
      • 👓Voting calculations
      • FAQ
  • DEIN system
    • Overview
    • Capital Pool
      • ☁️Liquidity Cushion
    • Compounded Pool
      • 📦Compounded Pool Premium pricing
    • Reward Pool
      • 👓Precise APY calculations
    • Allowance
  • Other
    • Media Kit
    • Links
    • Math stuff
Powered by GitBook
On this page
  • General (Commonly used formulas)
  • Underwriting Position APY
  • Underwriting Max (General) APY
  1. DEIN system
  2. Reward Pool

Precise APY calculations

PreviousReward PoolNextAllowance

Last updated 1 year ago

General (Commonly used formulas)

User’s reward allocation for a singular position

RD%=Cx∑n=1usersCn Cx=T⋅MR_{D\%} = \frac{C_x}{\sum_{n=1}^{users}C_n} \\\ \\C_x = T \cdot M RD%​=∑n=1users​Cn​Cx​​ Cx​=T⋅M

Where:RD%  −  allocation  of  rewards  for  the  user  X′s  positionCx,Cn−  contribution  of  the  user  X,  Nusers  −  amount  of  positions  in  the  Policy  BookT  −  user  X′s  staked  funds  of  the  positionM  −  user  X′s  multiplier  of  the  position\\\textbf{Where:}\\R_{D\%} \; -\; allocation \; of \; rewards \; for \; the \; user \; X's \; position\\C_x, C_n - \; contribution \; of \; the \; user \; X,\; N \\users \; - \; amount \; of \; positions \; in \; the \; Policy \; Book\\T \; - \; user \; X's \; staked \; funds \; of \; the \; position\\M \; - \; user \; X's \; multiplier \; of \; the \; positionWhere:RD%​−allocationofrewardsfortheuserX′spositionCx​,Cn​−contributionoftheuserX,Nusers−amountofpositionsinthePolicyBookT−userX′sstakedfundsofthepositionM−userX′smultiplieroftheposition

User’s yearly rewards for position X

Rx=RPB⋅BPY⋅RD%R_x= RPB \cdot BPY \cdot R_{D\%} Rx​=RPB⋅BPY⋅RD%​

Where:Rx−  yearly  rewards  for  the  user  X′s  positionRPB  −  Policy  Book′s  reward  per  blockBPY  −  blocks  in  a  yearRD%  −  allocation  of  rewards  for  the  user  X′s  position\\\textbf{Where:}\\R_x - \; yearly\; rewards \; for \; the \; user \; X's \; position\\RPB \; - \; Policy \;Book's \; reward \; per \; block\\BPY \; - \; blocks \; in \; a \; year\\R_{D\%} \; - \; allocation \; of \; rewards \; for \; the \; user \; X's \; positionWhere:Rx​−yearlyrewardsfortheuserX′spositionRPB−PolicyBook′srewardperblockBPY−blocksinayearRD%​−allocationofrewardsfortheuserX′sposition

Policy Book X reward multiplier calculation

Where: UR - Utilization Ratio RM - Reward Multiplier

These constants have been skipped in the formulas for clarity's sake. Base RM = 1 Min. RM = 0.15 Max. RM = 2 Risky UR = 85% Moderate UR = 50%

Policy Book X reward allocation calculation

Underwriting Position APY

Underwriting Max (General) APY

This is the APY used on general Policy Book views. It's an estimation of the biggest possible return, it assumes the minimal investment and longest staking duration.

UR<50%  ⟹  RMx=UR−1%50%∗(1−0.15)+0.15UR < 50\% \implies RM_x=\frac{UR-1\%}{50\%}*(1-0.15)+0.15UR<50%⟹RMx​=50%UR−1%​∗(1−0.15)+0.15
50%<UR<85%  ⟹  RMx=150 \%< UR < 85\% \implies RM_x=150%<UR<85%⟹RMx​=1
UR>85%  ⟹  RMx=1+(2−1)∗(UR−85%)100%−85%UR > 85\% \implies RM_x= 1+\frac{(2-1)*(UR-85\%)}{100\%-85\%}UR>85%⟹RMx​=1+100%−85%(2−1)∗(UR−85%)​
RP%=RMx⋅CPIPx∑n=1pools(RMn⋅ CPIPn)R_{P\%} = \frac{RM_x \cdot CPIP_x}{\sum_{n=1}^{pools}(RM_n \cdot \ CPIP_n)} RP%​=∑n=1pools​(RMn​⋅ CPIPn​)RMx​⋅CPIPx​​

Where:RP%  −  allocation  of  rewards  for  the  Policy  Book  XRMx  −  Reward  Multplier  of  the  Policy  Book  XCPIPx  −  staked  DEINxCover  in  Policy  Book  Xpools  −  number  of  whitelisted  pools\\\textbf{Where:}\\R_{P\%} \; - \; allocation \; of \; rewards \; for \; the \; Policy \; Book\; X\\RM_x \; - \; Reward \; Multplier \; of \; the \; Policy \; Book \; X\\CPIP_x \; - \; staked \; DEINxCover \; in \; Policy \; Book \; X\\pools \; - \; number \; of \; whitelisted \;poolsWhere:RP%​−allocationofrewardsforthePolicyBookXRMx​−RewardMultplierofthePolicyBookXCPIPx​−stakedDEINxCoverinPolicyBookXpools−numberofwhitelistedpools

APYx=Rx⋅DEINpriceTxAPY_x = \frac{R_x\cdot DEIN_{price}}{T_x} APYx​=Tx​Rx​⋅DEINprice​​

Where:Rx  −  yearly  rewards  for  the  position  xTx  −  staked  funds  in  the  position  xDEINprice  −  price  of  DEIN\\\textbf{Where:} \\R_x \; - \; yearly \;rewards \; for \; the \; position \; x\\T_x \; - \; staked \; funds \; in \; the \; position \; x\\DEIN_{price} \; - \; price \; of \; DEINWhere:Rx​−yearlyrewardsforthepositionxTx​−stakedfundsinthepositionxDEINprice​−priceofDEIN

APYmax=Rx⋅DEINpriceTx\\APY_{max} = \frac{R_x \cdot DEIN_{price}}{T_x} APYmax​=Tx​Rx​⋅DEINprice​​

Where:Rx  is  calculated  for  Cx=500Tx=100DEINprice−  price  of  DEIN \\\textbf{Where:}\\R_x \; is \; calculated \; for \; C_x = 500 \\T_x = 100 \\DEIN_{price} - \; price \; of \; DEIN Where:Rx​iscalculatedforCx​=500Tx​=100DEINprice​−priceofDEIN

👓